Real Zeros and Normal Distribution for Statistics on Stirling Permutations Defined by Gessel and Stanley
نویسنده
چکیده
We study Stirling permutations defined by Gessel and Stanley in [4]. We prove that their generating function according to the number of descents has real roots only. We use that fact to prove that the distribution of these descents, and other, equidistributed statistics on these objects converge to a normal distribution.
منابع مشابه
Analysis of Statistics for Generalized Stirling Permutations
In this work we give a study of generalizations of Stirling permutations, a restricted class of permutations of multisets introduced by Gessel and Stanley [15]. First we give several bijections between such generalized Stirling permutations and various families of increasing trees extending the known correspondences of [20, 21]. Then we consider several permutation statistics of interest for ge...
متن کاملGeneralized Stirling permutations, families of increasing trees and urn models
Bona [6] studied the distribution of ascents, plateaux and descents in the class of Stirling permutations, introduced by Gessel and Stanley [14]. Recently, Janson [18] showed the connection between Stirling permutations and plane recursive trees and proved a joint normal law for the parameters considered by Bona. Here we will consider generalized Stirling permutations extending the earlier resu...
متن کاملEulerian Quasisymmetric Functions
We introduce a family of quasisymmetric functions called Eulerian quasisymmetric functions, which specialize to enumerators for the joint distribution of the permutation statistics, major index and excedance number on permutations of fixed cycle type. This family is analogous to a family of quasisymmetric functions that Gessel and Reutenauer used to study the joint distribution of major index a...
متن کاملEulerian Quasisymmetric Functions and Poset Topology
We introduce a family of quasisymmetric functions called Eulerian quasisymmetric functions, which have the property of specializing to enumerators for the joint distribution of the permutation statistics, major index and excedance number on permutations of fixed cycle type. This family is analogous to a family of quasisymmetric functions that Gessel and Reutenauer used to study the joint distri...
متن کاملOrthogonal Polynomials and Smith Normal Form
Smith normal form evaluations found by Bessenrodt and Stanley for some Hankel matrices of q-Catalan numbers are proven in two ways. One argument generalizes the Bessenrodt–Stanley results for the Smith normal form of a certain multivariate matrix that refines one studied by Berlekamp, Carlitz, Roselle, and Scoville. The second argument, which uses orthogonal polynomials, generalizes to a number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 23 شماره
صفحات -
تاریخ انتشار 2009